Специалист
Имя: Марсель
Пол: Мужской
Адрес: Москва
Инвестирую в: Свой бизнес
Регистрация: 16.07.2014
Сообщений: 2,614
Благодарностей: 3,555
Корейцы научили микролабиринты самоорганизации
Исследователи из Южной Кореи разработали масштабируемую технологию изготовления лабиринтообразных микроструктур с программируемой направленностью.
Разработка универсальной технологии создания сложных трехмерных структур (простейшим примером может служить киригами) важна для многих приложений, например оптики, электроники и физического кодирования информации. В отличие от литографии, такой метод должен отвечать ряду требований: выходной продукт должен быть однородным, предусматривать программирование направленности и иметь произвольную, неповторимую архитектуру. Несмотря на различные решения, реализовать подход в микрометровом масштабе до сих пор не удавалось. Чтобы восполнить пробел, специалисты из Сеульского национального университета использовали свойства физически неклонируемой функции (PUF).
PUF представляет собой необратимую функцию, которая выражена в физической структуре. Предполагая простую оценку содержания, последняя вместе с тем минимизирует возможность воспроизводства, поскольку содержит множество случайных компонентов. Более того, за счет уникальности ответа PUF исключает построение своей точной математической модели. Так, магнитные полосы современных банковских карт состоят из миллиардов частиц феррита бария с разными формой, размером и ориентацией в пространстве. Вероятность абсолютного физического копирования такой системы оценивается в 1 на 900 миллионов. В то же время каждая карта обладает специфическим и отчетливым магнитным сигналом.
В качестве альтернативы авторы новой статьи воплотили схожий принцип на примере лабиринтоподобных микроструктур. На первом этапе они изготовили микрочастицы из синтетического фотополимера и посредством ультрафиолетового излучения сформировали на их поверхности сеть углублений. Затем на частицы нанесли тетраэтоксисилан, который, высыхая, образовал вокруг углублений складки. Последние при этом частично провалились, и между ними хаотично проявились выступы. Таким образом ученые представили способ производства однородных структур со случайной архитектурой: трехмерный рисунок на подложке в результате зависел от состава покрытия, температуры и иных переменных.
По словам исследователей, предложенная технология может использоваться в разных сферах. Например, как и магнитные частицы, они, теоретически, позволят защитить банковские карты от физического копирования, а ценные предметы — от подделки. Сейчас авторы работают над мобильностью сканера для считывания полученных микроструктур. Между тем осенью 2016 года китайские ученые представили метод защиты картин с помощью «дифракционных» водяных знаков. В отличие от алгоритма двойного случайного кодирования фазы (DRPE), он рассчитан на однократное облучение изображения дважды рассеянным лазерным лучом. В будущем технологию планируется адаптировать к динамическим изображениям.
Источник: