Корейские термоядерщики на 20 секунд зажгли на Земле искусственное Солнце
На днях корейские термоядерщики установили новый мировой рекорд: на сверхпроводящем токамаке KSTAR (его еще называют корейское искусственное солнце, поскольку наша звезда светит и греет именно за счет термоядерной реакции) они в течении 20 секунд удерживали плазму температурой выше 100 миллионов градусов. С одной стороны, это круто, потому что более чем вдвое превышен предыдущий рекорд - в 2019 году он составлял 8 секунд. С другой стороны - непонятно, что это такое и как оно нам в хозяйстве пригодится?
Попробуем ответить на наивные вопросы с помощью Владимира Рожанского, профессора Высшей инженерно-физической школы Санкт-Петербургского политехнического университета Петра Великого (СПбПУ - участник Проекта 5-100, это программа повышения конкурентоспособности ведущих российских университетов).
1. Почему 20 секунд это круто?
Комментарий эксперта: Чтобы зажечь термоядерную реакцию с положительным выходом энергии (когда полезная энергия термоядерного синтеза превышает затраты на нагрев плазмы) нужно иметь три достаточно высоких параметра:
- температура плазмы должна превышать 100 млн градусов
- концентрация плазмы должна тоже быть достаточной
- время удержания энергии (время, которое плазма будет оставаться горячей при выключении источников нагрева) также должно быть достаточно большим.
На корейском токамаке KSTAR, как и на других современных токамаках выполнены пока только первые два условия, а время удержания - недостаточно. На сегодняшний день 20 секунд на KSTAR с его относительно небольшими размерами - это много.
2. Работы над созданием термоядерного реактора начались еще полвека назад. Почему за это время не удалось создать действующую установку?
Комментарий эксперта: 50-летняя история управляемого термоядерного синтеза связана в значительной степени с проблемой удержания плазмы в магнитном поле. В ней развиваются многочисленные неустойчивости, которые переводят плазму в турбулентное состояние, вызывают уход энергии из объема реактора и падение времени удержания. Более 50 лет понадобилось человечеству на решение этой проблемы. Один из способов - увеличение размеров реактора, так как время удержания плазмы растет пропорционально квадрату размеров. Самый большой термоядерный реактор ИТЭР будет иметь радиус около 6 метров. Ну и, конечно, разработаны многие новые технологии, которых мы не имели 50 лет назад.
3. Почему корейцам удалось продвинуться вперед? Какую фишку они применили?
Комментарий эксперта: При работе необходимо поддерживать сильное магнитное поле за счет токов в катушках реактора. При этом в обычных катушках происходят огромные потери энергии. Чтобы этого избежать, надо использовать сверхпроводящие материалы для катушек, работающих почти при нулевых температурах по Кельвину. Такая технология используется на KSTAR . Кроме этого, удалось создать так называемый внутренний транспортный барьер с подавленной турбулентностью, что привело к общему улучшению удержания.
4. Какой эффект может быть от термоядерного реактора, если его удастся создать?
Комментарий эксперта: Человечество получит практически неисчерпаемую «зеленую» энергию.
5. Чем термоядерные реакторы лучше, чем реакторы на действующих АЭС, которые используют реакцию не синтеза, а деления?
Комментарий эксперта: Постепенно приходит осознание того факта, что атомная энергетика на реакциях деления, не может быть использована в перспективе из-за экологических проблем, связанных с утилизации отходов, возможных аварий и т.д. Да и ее коммерческая привлекательность существенно падает из-за расходов необходимых при выводе реакторов из эксплуатации. Не случайно многие страны, например Германия, постепенно отказываются от атомной энергетики. Термоядерная энергетика свободна от этих недостатков.
6. В каком временном горизонте стоит ждать появления работающего устройства?
Комментарий эксперта: Первая плазма на термоядерном реакторе ИТЭР должна быть получена осенью 2025 года. Думаю, затем уйдет еще 10-15 лет работы реактора, чтобы к концу этого периода получить самоподдерживающуюся термоядерную реакцию.
Источник